First Structural Characterisation of Penta- and Hexa-phosphorus Analogues of Ferrocene. Synthesis, Crystal and Molecular Structure of the Air-stable, Sublimable Iron Sandwich Compounds $[Fe(\eta^5-C_2R_2P_3)_2]$, and $[Fe(\eta^5-C_3R_3P_2)(\eta^5-C_2R_2P_3)]$ $(R = But)$

Rainer Bartsch, Peter B. Hitchcock, and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 SQJ, Sussex, U.K.

The first structurally characterised penta- and hexa-phosphorus analogues of ferrocene, bis- η^{5-2} ,5-di-t-butyl-1,3,4-trip hosp hacyclopentadienyl)iron and η^{5-2} ,4,5-tri-t-butyl-1,3-dip hosp hacyclopentadienyl)-(q5-2,5-di-t-butyl-1 ,3,4-triphosphacyclopentadienyl)iron, are described.

The discovery of ferrocene, $[Fe(\eta^5-C_5R_5)_2]$ (1) $(R = H)$, the first sandwich compound, is one of the landmarks of organotransition metal chemistry. **1-4** Subsequently Mathey *et a1.5* substituted a single CR unit by phosphorus in one or more of the cyclopentadienyl rings of **(1)** to form q5-phospholyl(2) and phospha-ferrocene compounds **(3),** which have been fully structurally characterised.

The recent report by Scherer and Brück⁶ of the characterisation of a novel penta-phosphorus ferrocene compound formulated as $[Fe(\eta^5-C_5R_5)(\eta^5-P_5)]$ (4) $(R = Me)$ on the basis

of elemental analysis, n.m.r. and mass spectroscopic studies prompts us to report syntheses and full single crystal X -ray structural characterisation of the novel penta- and hexaphosphorus compounds $[Fe(\eta^5-C_3R_3P_2)(\eta^5-C_2R_2P_3)]$ (5) and $[Fe(\eta^5-C_2R_2P_3)_2]$ **(6)** $(R = B\mu^t)$.[†]

The green, air-stable, sublimable (120°C at 0.01 mmHg) hexa-phosphorus complex **(6)** is the expected major product

^{&#}x27;f *Note added in proof:* Adamantyl analogues of *(5)* and **(6)** have also now been synthesised.

 $(ca. 30\%)$ of the reaction between FeCl₂ and $[Li(dme)₃]$ $[C_2R_2P_3]$ $(R = But;$ dme = 1,2-dimethoxyethane) in monoglyme at room temperature, the lithium salt having been made by the method of Becker *et al.*⁷ from Li $[P(SiMe₃)₂]$ and the phospha-alkyne Bu^tC=P. The unexpected minor product *(5) (ca.* 10%) which is also green, air-stable, and sublimable can be separated from **(6)** by fractional crystallisation. \ddagger

Confirmation that both *(5)* and **(6)** are indeed phosphorus analogues **of** ferrocene comes from single-crystal X-ray diffraction studies§ and their molecular structures are shown in Figure 1. Compounds *(5)* and **(6)** have sandwich structures;

 \ddagger No preparative details of $[Li(dme)_3][C_2R_2P_3]$ (R = Bu^t) are given in ref. 7 but the compound has been fully characterised by $3^{1}P$ n.m.r. spectroscopy and an unpublished single crystal X-ray study. Our results suggest that $[Li(dme)_3][C_3R_3P_2]$ is also present in the reaction mixture {a singlet at δ_P + 45 p.p.m. (relative to trimethyl phosphite) can be assigned to the $[C_3R_3P_2]$ anion). This is currently under further study.

Mass spectra: (5): m/z 556 (M⁺), 418 [FeP₅C₃Bu^t₃]⁺ 256 [FeP₂- C_2 Bu^t₂]⁺, 200 [P₂C₂Bu^t₂]⁺, 169 [PC₂Bu^t₂]⁺. 518 *(M⁺)*, 380 [FeP₆- C_2 But₂]+, 218 [FeP₃CBut]+, 156 [FePCBut]+.

§ *Crystal data:* (5), $C_{25}H_{45}FeP_5$, $M = 556.4$, orthorhombic, space group *Pnam*, $a = 16.629(3)$, $b = 10.379(2)$, $c = 16.844(2)$ Å, $U =$ 2907.1 Å³, $Z = 4$, $D_c = 1.27$ g cm⁻³, monochromated Mo-K_α radiation, $\lambda = 0.71069$ Å, $\mu = 8.0$ cm⁻¹. The structure was solved by routine heavy-atom methods and refined by full-matrix least-squares with anisotropic thermal parameters using 1839 reflections with $I >$ $\sigma(I)$ measured on an Enraf-Nonius CAD4 diffractometer. Hydrogen atoms were omitted. The final residuals were $R = 0.067$, $R_w = 0.092$. The molecule lies on a crystallographic mirror plane.

(6), $C_{20}H_{36}FeP_6$, *M* = 518.2, orthorhombic, space group *C*222₁, *a* = 11.480(2), *b* = 16.405(2), *c* = 13.566(4) Å, *U* = 2554.8 Å³, *Z* = 4, *D_c* $= 1.35$ g cm⁻³, monochromated Mo-K_α radiation, $\mu = 9.7$ cm⁻¹

The structure analysis was as for (5) except that $R = 0.064$, $R_w =$ 0.077 for 944 reflections with $I > \sigma(I)$. The molecule lies on a crystallographic two-fold rotation axis.

In both molecules the five-membered rings are planar and approximately parallel. In *(5)* the angle between the planes is 1" and in **(6)** it is 8".

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Cystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. Two views of the molecular structures of **(5)** and **(6).**

Figure 2. Bond lengths in (5) and (6) (\AA) . Bond lengths to iron: (5), from P(1) 2.330(3), P(2) 2.360(2), P(3) 2.316(2), C(1) 2.208(7), C(2) 2.192(7), C(3) 2.242(9); **(6),** from P(1) 2.330(3), P(2) 2.358(3), P(3) 2.359(3), C(1) 2.197(11), C(2) 2.222(12) A.

the two q5-rings are eclipsed in both structures. In both *(5)* and **(6)** the disposition of the rings minimises inter-ring interaction of the But groups. Bond lengths and bond angles in *(5)* and **(6)** which are summarised in Figure 2 are comparable with data for the $[(CR)₄P]$ rings of 3,4-dimethylphospha-ferrocene.⁸ The $31P{1H}$ n.m.r. spectra indicate that the same structures obtain in solution although evidence of some ring rotation is observed for **(6)** above -4O"C.q

These results on the $[(RC)_2P_3]$ and $[(RC)_3P_2]$ ring systems further extend the utility of phospha-alkynes as ligands in organotransition metal chemistry,^{11} and together with very recent reports of transition metal complexes containing planar

⁷ N.m.r. spectra: 'H, *(5),* 6 1.58 **(s),** 1.56 **(s),** and 1.27 **(s)** (relative intensity $2:2:1$); **(6)**, δ 1.50 **(s)**. $31P\{1H\}$ (relative to trimethyl phosphite), **(5)**, AB_2 , δ + 49.0 (PA) and 48.1 p.p.m. (PB), $J(PAPB)$ 44 \mathbf{Hz} ; (6), \mathbf{AA} 'BB'CC', δ 79.0 (P^A), 71.0 (P^B), and 32.0 p.p.m. (P^C), ¹J (PBPC) 411.2, 2J (PAPB 37.9, 2J (PAPC) 42, *2.l* **(PCPC')** -53 **Hz;** other inter-ring coupling constants are insignificant. This spectrum has been fully analysed and simulated by Dr. A. G. Avent. The temperature dependence of the 31P and lH n.m.r. spectra of **(6)** along with the large inter-ring 2J(PCPC') coupling constant and their implications will be discussed in a later publication.

 η^{6} -P₆,⁹ η^{5} -P₅,^{6,10} η^{4} -[(CR)₂P₂],^{10,12} and η^{4} -[(CR)₃P]¹³ ring systems strongly suggests to us that families of planar systems strongly suggests to us that families of planar $[(CR)_mP_n]$ rings $(n = 4-0, m = 0-4; n = 5-0, m = 0-5; n$ $[(CR)_mP_n]$ rings $(n = 4-0, m = 0-4; n = 5-0, m = 0-5; n = 6-0, m = 0-6)$, stabilised in suitable metal complexes should be capable of synthesis. Routes to planar $[P_4]$, $[(CR)₃P₃]$, and related ring systems are currently under study.

The considerable ligating potential of the $[\eta^5$ -C₂R₂P₃] ring system is further suggested by a preliminary study in which $[Li(dme)_3][C_2R_2P_3]$ $(R = Bu^t)$ reacts with $[MnBr(CO)_5]$ to afford a thermally stable orange oil whose mass spectrum exhibits a molecular ion and the expected fragmentation pattern for $[Mn(n⁵-C₂R₂P₃)(CO)₃]$ (R = Bu^t), analogous to $[Mn(n^5-C_5H_5)(CO)_3]$ and $[Mn(n^5-C_4R_4E)(CO)_3]^{14}$ (R = Ph, $E = P$ or As).

We thank the S.E.R.C. for their continuing support for this work, and Dr. A. G. Avent and Mr. **A.** M. Greenway for considerable help with the n.m.r. and mass spectroscopic studies.

Received, 6th April 1987; Com. 440

References

1 T. **J.** Kealy and P. L. Pauson, *Nature (London),* 1951, **168,** 1039.

- 2 **S.** A. Miller, **J.** A. Tebboth, and J. **F.** Tremaine, J. *Chem. SOC.,* 1952,632.
- 3 *G.* Wilkinson, M. Rosenblum, M. C. Whiting, and R. B. Woodward, *J. Am. Chem. Soc.*, 1952, 74, 2125.
- 4 E. 0. Fischer and W. Pfab, *2. Naturforsch., Teil B,* 1952,7,377.
- 5 **F.** Mathey, **A.** Mitschler, and R. Weiss, J. *Am. Chem. SOC.,* 1977, 99,3537; F. Mathey J. Fischer, and J. H. Nelson, *Struct. Bonding (Berlin),* 1983, *55,* 153 and references therein.
- 6 0. J. Scherer and T. Briick, *Angew. Chem., Znt. Ed. Engl.,* 1987, **26,** 59.
- 7 *G.* Becker, W. Becker, R. Knebl, H. Schmidt, U. Weeber, andM. Westerhausen, *Nova Acta Leopold,* 1985, *59,* 55.
- 8 G. de Lauzon, B. Deschamps, T. Fischer, F. Mathey, and A. Mitschler, *J. Am. Chem. Soc.*, 1980, 102, 994.
- 9 0. J. Scherer, H. Sitzmann, and *G.* Wolmerhauser, *Angew. Chem., Int. Ed. Engl.,* 1985, **24,** 351.
- 10 0. J. Scherer, J. Schwalb, **G.** Wolmerhauser, W. Kaim, and R. *Gross,Angew. Chem., Int. Ed. Engl.,* 1986, **25,** 363.
- 11 P. **B.** Hitchcock, M. J. Maah, and **J.** F. Nixon, *J. Chem. SOC., Chem. Commun.,* 1986, 737, and references therein.
- 12 P. Binger, R. Milczarek, R. Mynott, M. Regitz, and W. Rosch, *Angew. Chem., Int. Ed. Engl.,* 1986, **25,** 646.
- 13 R. Milczarek, Dissertation Universitat, Kaiserslautern (1986); P. Binger, personal communication (1986).
- 14 E. W. Abel, N. Clark, and *C.* Towers, J. *Chem. SOC., Dalton Trans.,* 1979, 1552.